Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 736: 30

Answer

Diverges

Work Step by Step

It is given a sequence $a_n=\frac{4n^2-3n}{2n+1}$. Calculate the limit of the sequence: $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}\frac{4n^2-3n}{2n+1}$ $=\lim\limits_{n \to \infty}\frac{2n(2n+1)-5n}{2n+1}$ $=\lim\limits_{n \to \infty}2n-\frac{5n}{2n+1}$ $=\lim\limits_{n \to \infty}2n-\frac{5}{2+1/n}$ $=\lim\limits_{n \to \infty}2n-\lim\limits_{n \to \infty}\frac{5}{2+1/n}$ $=\infty-\frac{5}{2+0}$ $=\infty$ Since the limit of the sequence is infinity, the sequence diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.