Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Review - Exercises - Page 823: 55

Answer

$\int\frac{e^{x}}{x}dx=C+ln|x|+\Sigma_{n=1}^\infty\frac{x^{n}}{n(n!)}$

Work Step by Step

$\int\frac{e^{x}}{x}dx=\int \frac{1}{x}\Sigma_{n=0}^\infty\frac{x^{n}}{n!}dx=\int \Sigma_{n=0}^\infty\frac{x^{n-1}}{n!}dx$ $\int \Sigma_{n=0}^\infty\frac{x^{n-1}}{n!}dx=\int \frac{1}{x}+\int \Sigma_{n=1}^\infty\frac{x^{n-1}}{n!}dx$ $=C+ln|x|+\Sigma_{n=1}^\infty \int \frac{x^{n-1}}{n!}dx$ $=C+ln|x|+\Sigma_{n=1}^\infty\frac{x^{n}}{n(n!)}$ Hence, $\int\frac{e^{x}}{x}dx=C+ln|x|+\Sigma_{n=1}^\infty\frac{x^{n}}{n(n!)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.