Answer
(a) $\frac{1}{2}$
(b) Ellipse
(c) $y=1$
(d) See graph
Work Step by Step
Part (a)
$r=\frac{1}{2+\sin\theta}$
$\frac{ed}{1+e\sin\theta}=\frac{\frac{1}{2}}{1+\frac{1}{2}\sin\theta}$
$e=\frac{1}{2}$ and $ed=\frac{1}{2}$
$e=\frac{1}{2}$ and $d=1$
So, the eccentricity is $\frac{1}{2}$.
Part (b)
Since $e=\frac{1}{2}<1$, the conic is an ellipse.
Part (c)
We have obtained $d=1$.
Using Theorem 6, and part (c) of Figure 2, the directrix has the equation $y=1$.
Part (d)
See graph