Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 683: 76

Answer

$\pi(e^2+2e-6)$

Work Step by Step

Recall: The area of the surface obtained by rotating the curve $x=f(t)$ and $y=g(t)$ for $a\leq t\leq b$ about the y-axis is formulated by $S=\int_a^b2\pi xds$ where $ds=\sqrt{(dx/dt)^2+(dy/dt)^2}dt$. Find $ds$: $ds=\sqrt{(dx/dt)^2+(dy/dt)^2}dt=\sqrt{(e^t-1)^2+(2e^{t/2})^2}dt=\sqrt{(e^t)^2-2e^t+1+4e^t}dt=\sqrt{(e^t)^2+2e^t+1}dt=\sqrt{(e^t+1)^2}dt=(e^t+1)dt$ Evaluate the area of the surface: $S=\int_0^12\pi(e^t-t)\cdot (e^t+1)dt$ $S=\int_0^12\pi (e^{2t}+e^t-te^t-t)dt$ $S=\int_0^1\pi(2e^{2t}+2e^t-2te^t-2t)dt$ $S=[\pi(e^{2t}+2e^t-(2te^t-2e^t)-t^2)]_0^1$ $S=[\pi(e^{2t}+4e^t-2te^t-t^2)]_0^1$ $S=\pi(e^{2\cdot 1}+4e^1-2\cdot 1e^1-1^2)-\pi(e^{2\cdot 0}+4e^0-2\cdot0e^0-0^2)$ $S=\pi(e^2+4e-2e-1)-\pi(1+4-0-0)$ $S=\pi(e^2+2e-1)-5\pi$ $S=\pi(e^2+2e-6)$ Thus, the surface area is $\pi(e^2+2e-6)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.