Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.1 - Curves Defined by Parametric Equations - 10.1 Exercises - Page 668: 2

Answer

$t=-2\to (x,y)=(\ln 5,-1)$ $t=-1\to (x,y)=(\ln 2,-\frac{1}{3})$ $t=0\to (x,y)=(0,0)$ $t=1\to (x,y)=(\ln 2,\frac{1}{5})$ $t=2\to (x,y)=(\ln 5,\frac{1}{3})$

Work Step by Step

Given: $x=\ln(t^2+1)$ and $y=\frac{t}{t+4}$ For $t=-2$, $x=\ln ((-2)^2+1)=\ln 5$ $y=\frac{-2}{-2+4}=\frac{-2}{2}=-1$ So, $(x,y)=(\ln 5,-1)$ at $t=-2$ For $t=-1$, $x=\ln ((-1)^2+1)=\ln 2$ $y=\frac{-1}{-1+4}=\frac{-1}{3}$ So, $(x,y)=(\ln 2,-\frac{1}{3})$ at $t=-1$ For $t=0$, $x=\ln (0^2+1)=\ln 1=0$ $y=\frac{0}{0+4}=\frac{0}{4}=0$ So, $(x,y)=(0,0)$ at $t=0$ For $t=1$, $x=\ln (1^2+1)=\ln 2$ $y=\frac{1}{1+4}=\frac{1}{5}$ So, $(x,y)=(\ln 2,\frac{1}{5})$ at $t=1$ For $t=2$, $x=\ln (2^2+1)=\ln 5$ $y=\frac{2}{2+4}=\frac{2}{6}=\frac{1}{3}$ So, $(x,y)=(\ln 5,\frac{1}{3})$ at $t=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.