Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Review - Exercises - Page 721: 51

Answer

Focus: $(-\frac{25}{24},3)$ Vertex: $(-1,3)$

Work Step by Step

Recall: The parabola $(y-b)^2=4p(x-a)$ has a vertex $(a,b)$ and a focus $(a+p,b)$. We have $6y^2+x-36y+55=0$. Rewrite the equation above: $6y^2-36y=-x-55$ $6y^2-36y+54=-x-55+54$ $6(y-3)^2=-(x+1)$ $(y-3)^2=-\frac{1}{6}(x-(-1))$ Then, $(a,b)=(-1,3)$ $4p=-\frac{1}{6}\rightarrow p=-\frac{1}{24}$ $a+p=-1+(-\frac{1}{24})=-\frac{25}{24}$ So, the vertex is $(-1,3)$ and the focus is $(-\frac{25}{24},3)$. Sketch the graph:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.