Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

APPENDIX D - Trigonometry - D Exercises - Page A 34: 52

Answer

$\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=2sec^{2}\theta$

Work Step by Step

We need to prove the identity $\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=2sec^{2}\theta$ $\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=\frac{1+sin\theta}{(1-sin\theta)({1+sin\theta)}}+\frac{1-sin\theta}{(1-sin\theta)({1+sin\theta)}}$ $\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=\frac{2}{1-sin^{2}\theta}$ Since $sin^{2}\theta+cos^{2}\theta=1$: $\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=\frac{2}{cos^{2}\theta}$ Also, $\frac{1}{cos\theta}=sec\theta$ Hence, $\frac{1}{1-sin\theta}+\frac{1}{1+sin\theta}=2sec^{2}\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.