Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 3 - Determinants - 3.3 Exercises - Page 186: 13

Answer

$A^{-1}=\begin{bmatrix} \frac{-1}{6}&\frac{-1}{6}&\frac{5}{6}\\ \frac{1}{6}&\frac{-5}{6}&\frac{1}{6}\\ \frac{1}{6}&\frac{7}{6}&\frac{-5}{6} \end{bmatrix}$

Work Step by Step

$det(A)=6$ Matrix of Cofactors: $C=\begin{bmatrix} {-1}&{1}&{1}\\{-1}&{-5}&{7}\\{5}&{1}&{-5} \end{bmatrix}$ After transposing, Adjugate matrix: $adj(A)=\begin{bmatrix} {-1}&{-1}&{5}\\{1}&{-5}&{1}\\{1}&{7}&{-5} \end{bmatrix}$ $A^{-1}=\frac{1}{det(A)}adjA$ $A^{-1}=\begin{bmatrix} \frac{-1}{6}&\frac{-1}{6}&\frac{5}{6}\\ \frac{1}{6}&\frac{-5}{6}&\frac{1}{6}\\ \frac{1}{6}&\frac{7}{6}&\frac{-5}{6} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.