Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.5 Exercises - Page 131: 4

Answer

\[ \mathbf{x} = \begin{bmatrix} -5 \\ 1 \\ 3 \end{bmatrix} \]

Work Step by Step

Given \[ A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix} \] \[ A = LU \text{ where } L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} \] Step 1: Solve $L\mathbf{y} = \mathbf{b}$ for $\mathbf{y}$ We need to solve: \[ \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix} \] Forward substitution (top to bottom): Row 1: \begin{align*} 1 \cdot y_1 &= 0 \\ y_1 &= 0 \end{align*} Row 2: \begin{align*} \frac{1}{2} \cdot y_1 + 1 \cdot y_2 &= -5 \\ \frac{1}{2} \cdot 0 + y_2 &= -5 \\ y_2 &= -5 \end{align*} Row 3: \begin{align*} \frac{3}{2} \cdot y_1 + (-5) \cdot y_2 + 1 \cdot y_3 &= 7 \\ \frac{3}{2} \cdot 0 + (-5) \cdot (-5) + y_3 &= 7 \\ 0 + 25 + y_3 &= 7 \\ y_3 &= -18 \end{align*} So: $\mathbf{y} = \begin{bmatrix} 0 \\ -5 \\ -18 \end{bmatrix}$ Step 2: Solve $U\mathbf{x} = \mathbf{y}$ for $\mathbf{x}$ We need to solve: \[ \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -18 \end{bmatrix} \] Backward substitution (bottom to top): Row 3: \begin{align*} -6 \cdot x_3 &= -18 \\ x_3 &= 3 \end{align*} Row 2: \begin{align*} -2 \cdot x_2 + (-1) \cdot x_3 &= -5 \\ -2 \cdot x_2 + (-1) \cdot 3 &= -5 \\ -2 \cdot x_2 - 3 &= -5 \\ -2 \cdot x_2 &= -2 \\ x_2 &= 1 \end{align*} Row 1: \begin{align*} 2 \cdot x_1 + (-2) \cdot x_2 + 4 \cdot x_3 &= 0 \\ 2 \cdot x_1 + (-2) \cdot 1 + 4 \cdot 3 &= 0 \\ 2 \cdot x_1 - 2 + 12 &= 0 \\ 2 \cdot x_1 + 10 &= 0 \\ 2 \cdot x_1 &= -10 \\ x_1 &= -5 \end{align*} So the final answer is: \[ \mathbf{x} = \begin{bmatrix} -5 \\ 1 \\ 3 \end{bmatrix} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.