Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.4 Exercises - Page 124: 21

Answer

See explanation

Work Step by Step

a) $A^{2}=A\cdot A=\begin{bmatrix}1& 0\\1 & 0\end{bmatrix}\cdot \begin{bmatrix}1& 0\\1 & 0\end{bmatrix}=\begin{bmatrix}1& 0\\0 & 1\end{bmatrix}=I_2$ b) Let $M=\begin{bmatrix}A& I_2 \\I_2 &-A\end{bmatrix}$ $M^{2}=\begin{bmatrix}A& I_2 \\I_2 &-A\end{bmatrix}\cdot \begin{bmatrix}A& I_2 \\I_2 &-A\end{bmatrix}$ $=\begin{bmatrix}A^2& O_2 \\O_2 &-A^2\end{bmatrix}=\begin{bmatrix}I_2& O_2 \\O_2 &I_2\end{bmatrix}=I_4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.