Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.4 Exercises - Page 123: 10

Answer

See explanation

Work Step by Step

Because the two matrices are inverses \[ \left[\begin{array}{lll} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{array}\right]\left[\begin{array}{lll} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{array}\right]=\left[\begin{array}{lll} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{array}\right] \] 2 Get the left side of the equation: \[ \left[\begin{array}{lll} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{array}\right]\left[\begin{array}{lll} I & 0 & 0 \\ Z & I & 0 \\ X & Y & I \end{array}\right]=\left[\begin{array}{ccc} I I+0 Z+0 X & I 0+0 I+0 Y & I 0+00+0 I \\ C I+I Z+0 X & C 0+I I+0 Y & C 0+I 0+0 I \\ A I+B Z+I X & A 0+B I+I Y & A 0+B 0+I I \end{array}\right] \] 3 Set this equal to the right side of the equation: \[ \left[\begin{array}{ccc} I & 0 & 0 \\ C+Z & I & 0 \\ A+B Z+X & B+Y & I \end{array}\right]=\left[\begin{array}{ccc} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{array}\right] \] 4 $\mathrm{So}$ \[ \begin{array}{ccc} I=I & 0=0 & 0=0 \\ C+Z=0 & I=I & 0=0 \\ A+B Z+X=0 & B+Y=0 & I=I \end{array} \] 5 Because the (2,1) blocks are equal, $C+Z=0$ and $C=-Z$. Likewise since the (3,2) blocks are equal, $B+Y=0$ and $Y=-B .$ Finally, from the (3,1) entries, $A+B Z+X=0$ and $. X=-A-B Z$ since \[ Z=-C, X=-A-B(-C)=-A+B C \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.