Answer
$0.88^{\circ} \; Celsius$.
Work Step by Step
Step 1:- Translate the statement to form an equation.
Let the water temperature be $T$
and the water's depth be $D$.
Because $T$ varies inversely as $D$ we have:
$\Rightarrow T=\frac{k}{D}$ ...... (1)
Step 2:- Substitute the first set of values into the equation to find the value of $k$.
The given values are $D=1000\; meters$ and $T=4.4^{\circ}\;Celsius$.
Substitute into the equation (1).
$\Rightarrow 4.4=\frac{k}{1000}$
Multiply both sides by $1000$.
$\Rightarrow 1000\cdot 4.4=1000\cdot \frac{k}{1000}$
Simplify.
$\Rightarrow 4400=k$
Step 3:- Substitute the value of $k$ into the original equation.
Substitute $k=4400$ into the equation (1).
$\Rightarrow T=\frac{4400}{D}$ ...... (2)
Step 4:- Solve the equation to find the required value.
Substitute $D=5000\; meter$ into the equation (2).
$\Rightarrow T=\frac{4400}{5000}$
Simplify.
$\Rightarrow T=0.88$
Hence, the temperature is $0.88^{\circ} \; Celsius$.