Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 230: 43

Answer

$\{(1,2,3,-2)\}$.

Work Step by Step

The given system is $\left\{\begin{matrix} w & +x & +y &+z &=4 \\ 2w& +x & -2y &-z &=0 \\ w& -2x & -y &-2z &=-2 \\ 3w &+2x &+y &+3z &=4 \end{matrix}\right.$ The augmented matrix is $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 2 & 1 & -2& -1&0 \\ 1&-2&-1&-2&-2\\ 3&2&1&3&4 \end{array}\right]$ Perform $R_2\rightarrow R_2-2\times R_1,R_3\rightarrow R_3- R_1$ and $R_4\rightarrow R_4-3\times R_1$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 2-2(1) & 1-2(1) & -2-2(1)& -1-2(1)&0 -2(4)\\ 1-1&-2-1&-1-1&-2-1&-2-4\\ 3-3(1)&2-3(1)&1-3(1)&3-3(1)&4-3(4) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & -1 & -4& -3& -8\\ 0&-3&-2&-3&-6\\ 0&-1&-2&0&-8 \end{array}\right]$ Perform $R_2\rightarrow R_2(-1)$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0(-1) & -1(-1) & -4(-1)& -3(-1)& -8(-1)\\ 0&-3&-2&-3&-6\\ 0&-1&-2&0&-8 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&-3&-2&-3&-6\\ 0&-1&-2&0&-8 \end{array}\right]$ Perform $R_3\rightarrow R_3+3\times R_2$ and $R_4\rightarrow R_4+ R_2$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0+3(0)&-3+3(1)&-2+3(4)&-3+3(3)&-6+3(8)\\ 0+0&-1+1&-2+4&0+3&-8+8 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&10&6&18\\ 0&0&2&3&0 \end{array}\right]$ Perform $R_3\rightarrow R_3/10$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0/10&0/10&10/10&6/10&18/10\\ 0&0&2&3&0 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&1&3/5&9/5\\ 0&0&2&3&0 \end{array}\right]$ Perform $R_4\rightarrow R_4-2R_3$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&1&3/5&9/5\\ 0-2(0)&0-2(0)&2-2(1)&3-2(3/5)&0-2(9/5) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&1&3/5&9/5\\ 0&0&0&9/5&-18/5 \end{array}\right]$ Perform $R_4\rightarrow R_4(5/9)$. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&1&3/5&9/5\\ 0(5/9)&0(5/9)&0(5/9)&9/5(5/9)&-18/5(5/9) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cccc|c} 1 & 1 & 1& 1&4\\ 0 & 1 & 4& 3& 8\\ 0&0&1&3/5&9/5\\ 0&0&0&1&-2 \end{array}\right]$ Convert the matrix into system of equations as shown below. $\Rightarrow \left\{\begin{matrix} 1w +1x +1y +1z =\;4 \\ 0w +1x +4 y +3 z=\;8 \\ 0w +0 x +1 y + 3/5 \;z =9/5\\ 0 w +0 x +0 y +1 z=\; -2 \end{matrix}\right.$ or we can write. $\Rightarrow \left\{\begin{matrix} w +x +y +z =\;4 \\ \; \; \;x +4 y +3 z=\;8 \\ \;\; \;\;\; \;\;\;\; y + 3/5z =9/5\\ \;\; \;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; z=\; -2 \end{matrix}\right.$ Substitute back the value of $z$ into third equation. $\Rightarrow y+(3/5)(-2)=9/5$ Simplify. $\Rightarrow y-6/5=9/5$ Solve for $y$. $\Rightarrow y=3$. Substitute back the value of $z$ and $y$ into the second equation. $\Rightarrow x +4 (3) +3(-2)=8$ Simplify. $\Rightarrow x +12 - 6=8$ Solve for $x$. $\Rightarrow x=2$. Substitute back the value of $z,y$ and $x$ into the first equation. $\Rightarrow w +(2) +(3) +(-2) =4$ Simplify. $\Rightarrow w +2 +3 -2 =4$ Solve for $x$. $\Rightarrow w=1$. The solution set is $\{(w,x,y,z)\}=\{(1,2,3,-2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.