Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 3 - Exponents, Polynomials and Functions - 3.3 Composing Functions - 3.3 Exercises: 34

Answer

$\text{a) } f(g(4))=\dfrac{35}{3} \\\\\text{b) } g(f(4))=12$

Work Step by Step

$\bf{\text{Solution Outline:}}$ With \begin{array}{l}\require{cancel} f(x)= \dfrac{2}{3}x+\dfrac{1}{3} \\g(x)= 5x-3 ,\end{array} to find $ f(g(4)) ,$ find first $ g(4) .$ Then substitute the result in $f.$ To find $ g(f(4)) ,$ find first $ f(4) .$ Then substitute the result in $g.$ $\bf{\text{Solution Details:}}$ a) Replacing $x$ with $ 4 $ in $g$ results to \begin{array}{l}\require{cancel} g(x)=5x-3 \\\\ g(4)=5(4)-3 \\\\ g(4)=20-3 \\\\ g(4)=17 .\end{array} Replacing $x$ with the result above in $f$ results to \begin{array}{l}\require{cancel} f(x)=\dfrac{2}{3}x+\dfrac{1}{3} \\\\ f(17)=\dfrac{2}{3}(17)+\dfrac{1}{3} \\\\ f(17)=\dfrac{34}{3}+\dfrac{1}{3} \\\\ f(17)=\dfrac{35}{3} .\end{array} Hence, $ f(g(4))=\dfrac{35}{3} .$ b) Replacing $x$ with $ 4 $ in $f$ results to \begin{array}{l}\require{cancel} f(x)=\dfrac{2}{3}x+\dfrac{1}{3} \\\\ f(4)=\dfrac{2}{3}(4)+\dfrac{1}{3} \\\\ f(4)=\dfrac{8}{3}+\dfrac{1}{3} \\\\ f(4)=\dfrac{9}{3} \\\\ f(4)=3 .\end{array} Replacing $x$ with the result above in $g$ results to \begin{array}{l}\require{cancel} g(x)=5x-3 \\\\ g(3)=5(3)-3 \\\\ g(3)=15-3 \\\\ g(3)=12 .\end{array} Hence, $ g(f(4))=12 .$ Therefore, \begin{array}{l}\require{cancel} \text{a) } f(g(4))=\dfrac{35}{3} \\\\\text{b) } g(f(4))=12 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.