Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 2 - Systems of Linear Equations and Inequalities - 2.5 Absolute Value Equations and Inequalities - 2.5 Exercises - Page 188: 74


no solution

Work Step by Step

$\bf{\text{Solution Outline:}}$ To solve the given inequality, $ 20+3|5x-2|\le11 ,$ isolate first the absolute value expression. Then use the definition of absolute value to analyze the solution. $\bf{\text{Solution Details:}}$ Using the properties of inequality, the given is equivalent to \begin{array}{l}\require{cancel} 20+3|5x-2|\le11 \\\\ 3|5x-2|\le11-20 \\\\ 3|5x-2|\le-8 \\\\ |5x-2|\le-\dfrac{8}{3} .\end{array} The absolute value of $x,$ written as $|x|,$ is the distance of $x$ from zero. Hence, it is always a nonnegative number. In the same way, the left side of the inequality above is always a nonnegative number. This is never $\text{ less than or equal to }$ the negative number at the right. Hence, there is $\text{ no solution .}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.