Answer
The numbers are $120,115,60$
Work Step by Step
Let the numbers be $x,y,z$
Sum of three numbers is $295$
$x+y+z=295$ Equation $(1)$
One number is 5 more than the second and twice the third.
$x=5+y$
$y= x- 5$ Equation $(2)$
$x= 2z$
$z=\frac{x}{2}$ Equation $(3)$
Substituting $y$ and $z$ in Equation $(1)$
$x+y+z=295$
$x+x-5+\frac{x}{2}=295$
$2x+\frac{x}{2}=295+5$
$2x+\frac{x}{2}=300$
$\frac{4x+x}{2}=300$
$5x=600$
$x= 120$
From Equation $(2)$ and Equation $(3)$
$y= x- 5$
$y= 120- 5$
$y= 115$
$z=\frac{x}{2}$
$z=\frac{120}{2}$
$z=60$
The numbers are $120,115,60$