Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 9 - Section 9.5 - Common and Natural Logarithms - 9.5 Exercises - Page 621: 44

Answer

$1.0\times10^{-2}$

Work Step by Step

Using $ pH=-\log[H_3O^+] $ or the formula for the pH of a solution, with $pH= 2.0 $, then \begin{align*}\require{cancel} 2.0&=-\log_{10}[H_3O^+] &(\text{use }\log b=\log_{10}b) \\ 2.0&=\log_{10}[H_3O^+]^{-1} &(\text{use }\log_b x^y=y\log_b x) .\end{align*} Since $y=b^x$ implies $\log_b y=x,$ then the equation above is equivalent to \begin{align*}\require{cancel} 10^{2.0}&=[H_3O^+]^{-1} \\\\ \left(10^{2.0}\right)^{-1}&=\left([H_3O^+]^{-1}\right)^{-1} \\\\ \dfrac{1}{10^{2.0}}&=[H_3O^+] &(\text{use }a^{-1}=\dfrac{1}{a}) \\\\ [H_3O^+]&=\dfrac{1}{10^{2.0}} .\end{align*} Using the laws of exponents, the equation above is equivalent to \begin{align*}\require{cancel} [H_3O^+]&=1\times10^{-2} .\end{align*} Hence, the hydonium ion concentration, $[H_3O^+]$, of the $\text{ human gastric contents }$ is $ 1.0\times10^{-2} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.