#### Answer

$\text{a)
NOT a solution
}\\\text{b)
NOT a solution
}\\\text{c)
NOT a solution
}\\\text{d)
solution
}$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
Substitute the given points in the given inequality, $
x-5\gt0
.$ If the inequality is satisfied, then the given point is a solution. Otherwise, the given point is not a solution.
$\bf{\text{Solution Details:}}$
a) Substituting the given point, $(
0,0
)$ in the given inequality results to
\begin{array}{l}\require{cancel}
x-5\gt0
\\\\
0-5\gt0
\\\\
-5\gt0
\text{ (FALSE)}
.\end{array}
Hence, $(
0,0
)$ is NOT a solution.
b) Substituting the given point, $(
5,0
)$ in the given inequality results to
\begin{array}{l}\require{cancel}
x-5\gt0
\\\\
5-5\gt0
\\\\
0\gt0
\text{ (FALSE)}
.\end{array}
Hence, $(
5,0
)$ is NOT a solution.
c) Substituting the given point, $(
-1,3
)$ in the given inequality results to
\begin{array}{l}\require{cancel}
x-5\gt0
\\\\
-1-5\gt0
\\\\
-6\gt0
\text{ (FALSE)}
.\end{array}
Hence, $(
-1,3
)$ is NOT a solution.
d) Substituting the given point, $(
6,2
)$ in the given inequality results to
\begin{array}{l}\require{cancel}
x-5\gt0
\\\\
6-5\gt0
\\\\
1\gt0
\text{ (TRUE)}
.\end{array}
Hence, $(
6,2
)$ is a solution.
Hence,
\begin{array}{l}\require{cancel}
\text{a)
NOT a solution
}\\\text{b)
NOT a solution
}\\\text{c)
NOT a solution
}\\\text{d)
solution
}
\end{array}