#### Answer

$\left( -4,4 \right)$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
To solve the given inequality, $
|x| \lt 4
,$ use the definition of absolute value inequalities.
For the interval notation, use a parenthesis for the symbols $\lt$ or $\gt.$ Use a bracket for the symbols $\le$ or $\ge.$
For graphing inequalities, use a hollowed dot for the symbols $\lt$ or $\gt.$ Use a solid dot for the symbols $\le$ or $\ge.$
$\bf{\text{Solution Details:}}$
Since for any $c\gt0$, $|x|\lt c$ implies $-c\lt x\lt c$ (or $|x|\le c$ implies $-c\le x\le c$), the inequality above is equivalent to
\begin{array}{l}\require{cancel}
-4 \lt x \lt 4
.\end{array}
In interval notation, the solution set is $
\left( -4,4 \right)
.$
The colored graph is the graph of the solution set.