#### Answer

$\left( 1,2 \right)$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$
To solve the given inequality, $
-1 \lt 3x-4 \lt 2
,$ use the properties of inequality to isolate the variable.
For the interval notation, use a parenthesis for the symbols $\lt$ or $\gt.$ Use a bracket for the symbols $\le$ or $\ge.$
For graphing inequalities, use a hollowed dot for the symbols $\lt$ or $\gt.$ Use a solid dot for the symbols $\le$ or $\ge.$
$\bf{\text{Solution Details:}}$
Using the properties of inequality to isolate the variable results to
\begin{array}{l}\require{cancel}
-1+4 \lt 3x-4+4 \lt 2+4
\\\\
3 \lt 3x \lt 6
\\\\
\dfrac{3}{3} \lt \dfrac{3x}{3} \lt \dfrac{6}{3}
\\\\
1 \lt x \lt 2
.\end{array}
In interval notation, the solution set is $
\left( 1,2 \right)
.$
The colored graph is the graph of the solution set.