Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - 5.2 Inner Product Spaces - 5.2 Exercises - Page 247: 88


see the proof below.

Work Step by Step

\begin{aligned} \|u+v\|^2+\|u-v\|^2&= \langle u+v, u+v\rangle+ \langle u-v, u-v\rangle\\ &= \langle u, u\rangle+ \langle v, v\rangle +2 \langle u, v\rangle+ \langle u, u\rangle+ \langle v, v\rangle-2\langle u, v\rangle \\ &= 2\langle u, u\rangle+ 2\langle v, v\rangle \\ &=2\|u\|^2+2\|v\|^2 . \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.