#### Answer

$$\frac{6y^8}{x^5}$$

#### Work Step by Step

We know the following rules of exponents. The list of names is on page 330.
$$ (1) \ a^m\cdot a^n = a^{m+n} \\ (2) \ (ab)^m =a^mb^m \\ (3) \ (a^m)^n =a^{mn} \\ (4)
\ a^{-m} = \frac{1}{a^m} \\ (5)\ \frac{a^m}{a^n} =a^{m-n} \\ (6) \ a^0=1 \\ (7) \ (\frac{a}{b})^m =\frac{a^m}{b^m}$$
Thus, we find:
$$ 3\cdot \:2\cdot \frac{1}{y^4}x^{-7}x^2y^{12}\\ \frac{6x^2y^{12}}{x^7y^4}\\ \frac{6y^{12-4}}{x^5}\\ \frac{6y^8}{x^5}$$