#### Answer

$(F/G)(3)=2$
$(F/G)(7)=-\dfrac{1}{4}$

#### Work Step by Step

RECALL:
$(F/G)(x) = \dfrac{F(x)}{G(x)}, G(x)\ne0$
Using the rule above gives:
$(F/G)(3) = \dfrac{F(3)}{G(3)}$ and $(F/G)(7)=\dfrac{F(7)}{G(7)}$
The graph shows that:
$F(7)=-1$; $F(3)=2$
$G(7)=4$; $G(3)=1$
Thus, using the values above give:
$(F/G)(3)=\dfrac{F(3)}{G(3)}=\dfrac{2}{1}=2$
$(F/G)(7)=\dfrac{F(7)}{G(7)}=\dfrac{-1}{4}=-\dfrac{1}{4}$