Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 5 - Polynomials and Factoring - 5.6 Factoring: A General Strategy - 5.6 Exercise Set - Page 345: 96



Work Step by Step

Grouping the first $3$ terms the given expression is equivalent to \begin{array}{l}\require{cancel} 100+20t+t^2-4y^2 \\\\= (100+20t+t^2)-4y^2 \\\\= (t^2+20t+100)-4y^2 .\end{array} Using the factoring of trinomials in the form $x^2+bx+c,$ the $\text{ expression }$ \begin{array}{l}\require{cancel} (t^2+20t+100) \end{array} has $c= 100 $ and $b= 20 .$ The two numbers with a product of $c$ and a sum of $b$ are $\left\{ 10,10 \right\}.$ Using these two numbers, the $\text{ expression }$ above is equivalent to \begin{array}{l}\require{cancel} (t+10)(t+10)-4y^2 \\\\= (t+10)^2-4y^2 .\end{array} The expressions $ (t+10)^2 $ and $ 4y^2 $ are both perfect squares (the square root is exact) and are separated by a minus sign. Hence, $ (t+10)^2-4y^2 ,$ is a difference of $2$ squares. Using the factoring of the difference of $2$ squares which is given by $a^2-b^2=(a+b)(a-b),$ the expression above is equivalent to \begin{array}{l}\require{cancel} (t+10)^2-(2y)^2 \\\\= (t+10+2y)(t+10-2y) .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.