Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 8 - Linear Differential Equations of Order n - 8.3 The Method of Undetermined Coefficients: Annihilators - Problems - Page 526: 43

Answer

See below

Work Step by Step

We can notice that: $F(x)=11e^{x}-\sin 2x $ Obtain: $D^2(D-1)(D^2+4)^2y_p(x)=11e^{x}-\sin 2x $ Therefore, the general solution for the given differential equation is: $y(x)=c_1e^x+c_2\sin 2x+A_0e^{x}+A_1\sin2x+A_2\cos 2x$ The trial solution is $y_p=A_0e^{x}+A_1\sin2x+A_2\cos 2x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.