Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 7 - Eigenvalues and Eigenvectors - 7.2 General Results for Eigenvalues and Eigenvectors - Problems - Page 451: 2

Answer

See below

Work Step by Step

1. Find eigenvalues: (A-$\lambda$I)$\vec{V}$=$\vec{0}$ $\begin{bmatrix} 1-\lambda & 4\\ 2 & 3-\lambda \\ \end{bmatrix}\begin{bmatrix} v_1\\ v_2 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$ $\begin{bmatrix} 1-\lambda & 4\\ 2 & 3-\lambda \\ \end{bmatrix}=0$ $\left (1- \lambda \right ) (3- \lambda)=0$ $\lambda^2-4\lambda -5=0=0$ $\lambda_1=5, \lambda_2=-1$ 2. Find eigenvectors: For $\lambda_1=5$ let $B=A-\lambda_1I$ $B=\begin{bmatrix} 1-\lambda & 4\\ 2 & 3-\lambda \\ \end{bmatrix}=\begin{bmatrix} -4 & 4\\ 2 & -2 \\ \end{bmatrix}$ Then, $B\vec{V}$=$\vec{0}$ Use reduced row echelon form $[B|\vec{0}]$= \[ \left(\begin{array}{@{}cc|c@{}} 1 & -1 & 0 \\ 0 & 0& 0 \end{array}\right) \] let $r$ is a free variable. Then $x_1= x_2=r \\ $ $\vec{V}=(1,1) \\ \rightarrow dim(E_1)=1$ For $\lambda_1=-1$ let $C=A-\lambda_1I$ $C=\begin{bmatrix} 1-\lambda & 4\\ 2 & 3-\lambda \\ \end{bmatrix}=\begin{bmatrix} 2 & 4\\ 2 & 4 \\ \end{bmatrix}$ Then, $C\vec{V}$=$\vec{0}$ Use reduced row echelon form $[C|\vec{0}]$= \[ \left(\begin{array}{@{}cc|c@{}} 1 & 2 & 0 \\ 0 & 0& 0 \end{array}\right) \] let $s$ is a free variable. Then $x_1= -2x_2=-2S $ $\vec{V}=(-2,1) \\ \rightarrow dim(E_2)=1$ Hence, the matrix $A$ is nondefective.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.