Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 138: 49

Answer

$\int^b_aA(t)dt=\begin{bmatrix} \frac{e^{2}-1 }{2}& -\frac{1-\cos 2}{2} \\ -\frac{14}{3} & 1 \\ \tan 1 & \frac{1}{2}+\cos 1 \end{bmatrix}$

Work Step by Step

Given: $A(t)=\begin{bmatrix} e^{2t} & \sin^{2t} \\ t^2 -5 & te^{t} \\ \sec^2t & 3t-\sin t \end{bmatrix}$ The antiderivative of the matrix function is given by: $\int^b_aA(t)dt=\int^b_aa_{ij}(t)dt$ Hence here, $\int^b_a=\int ^1_0\begin{bmatrix} e^{2t} & \sin^{2t} \\ t^2 -5 & te^{t} \\ \sec^2t & 3t-\sin t \end{bmatrix}=\begin{bmatrix} \frac{e^{2} }{2}& -\frac{\cos 2}{2} \\ -\frac{14}{3} & 0 \\ \tan 1 & \frac{3}{2}+\cos 1 \end{bmatrix}-\begin{bmatrix} \frac{1}{2}& -\frac{-1}{2} \\ 0 &-1 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} \frac{e^{2}-1 }{2}& -\frac{1-\cos 2}{2} \\ -\frac{14}{3} & 1 \\ \tan 1 & \frac{1}{2}+\cos 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.