Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 71: 19

Answer

$q=E_0C+(q_0-E_0C)\cos(\frac{t}{\sqrt LC})$

Work Step by Step

Since $\frac{du}{dt}$, we obtain: $$\frac{du}{dt}=\frac{du}{dq}\frac{dq}{dt}=u\frac{du}{dt}$$ $$\frac{d^2q}{dt^2}+\frac{1}{LC}q=\frac{E_0}{L}$$ and we also have: $$u\frac{du}{dq}+\frac{q}{LC}=\frac{E_0}{L}$$ Hence: $$udu+(\frac{q}{LC}-\frac{E_0}{L})dq=0$$ Integrating both sides: $$\frac{1}{2}u^2+\frac{1}{2}q^2.\frac{1}{LC}-\frac{E_0q}{L}+c_1=0$$ Since $u(q_0)=0$, we have: $$0+\frac{1}{2}q_0^2.\frac{1}{LC}-\frac{E_0q_0}{L}+c_1=0$$ Solve for $c_1$: $$ \rightarrow c_1=\frac{E_0q_0}{L}-\frac{1}{2LC}q_0^2$$ Hence here, $$u=\sqrt \frac{2E_0q}{L}-\frac{q^2}{LC}-\frac{2E_0q_0}{L}+\frac{q_0^2}{LC}$$ $$u=\frac{1}{\sqrt LC}\sqrt -q^2+2E_0Cq-(E_0C)^2+q^2_0+(E_0C)^2-2E_0q_0C$$ $$u=\frac{1}{\sqrt LC}\sqrt (q_0-E_0C)^2-(q-E_0C)^2$$ $$\rightarrow \frac{dq}{dt}=\frac{1}{\sqrt LC}\sqrt (q_0-E_0C)^2-(q-E_0C)^2$$ $$\rightarrow \frac{dq}{\sqrt (q_0-E_0C)^2-(q-E_0C)^2}=\frac{1}{\sqrt LC}$$ Integrating both sides: $$\sin^{-1}(\frac{q-E_0C}{q_0-E_0C})=c_2+\frac{t}{\sqrt LC}$$ Since $q(0)=0 \rightarrow c_2=\frac{\pi}{2}$ Thus, the solution is given by: $$q=E_0C+(q_0-E_0C)\sin(\frac{\pi}{2}+\frac{t}{\sqrt LC})$$ $$q=E_0C+(q_0-E_0C)\cos(\frac{t}{\sqrt LC})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.