Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 60: 27

Answer

See below

Work Step by Step

Given: $T_m=80e^{-\frac{t}{20}}\\k=\frac{1}{40}$ Apply Newton's cooling law, we have: $\frac{dT}{dt}=-k(T-T_m)\\ \frac{dT}{dt}=-k(T-80e^{-\frac{t}{20}})\\ \frac{dT}{dt}+kT=80e^{-\frac{t}{20}}$ Since this is a linear equation whose solution can be given by: $T=e^{-\int kdt}(c_1+\int 80ke^{-\frac{t}{20}}(e^{\int kdt})dt)\\ T=c_1e^{-kt}+\frac{1600ke^{-\frac{t}{20}}}{20k-1}\\ T=c_1e^{-\frac{1}{40}t}-80e^{-\frac{1}{20}t}$ We are given $T(0)=0\circ F$, then $T(0)=c_1-80=0\\ \rightarrow c_1=80$ Substitute: $T(t)=80e^{-\frac{t}{40}}-80e^{-\frac{t}{20}}$ For $t \rightarrow \infty$, we have: $\lim T(t)=\lim (80e^{-\frac{t}{40}}-80e^{-\frac{t}{20}})=0$ Let $T'(t)=0\\ \rightarrow 4e^{-\frac{t}{20}}-2e^{-\frac{t}{40}}=0\\ \rightarrow e^{\frac{t}{20}-\frac{t}{40}}=2\\ \rightarrow t=50\ln 2\\ \rightarrow t\approx 27.73$ Hence, the maximum temperature is: $T(t_{max})=80e^{-\frac{40\ln 2}{40}}-80e^{-\frac{40\ln 2}{20}}=20$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.