#### Answer

$y=96e^{-0.968x}$

#### Work Step by Step

One of Basic Logarithmic Properties : $b^{\log_{b}x}=x$
Swap b with e and x with $(0.38)^{x}:$
$(0.38)^{x}=e^{\ln(0.38)^{x}}$
...now apply The Power Rule: $\log_{\mathrm{b}}\mathrm{M}^{\mathrm{p}}=\mathrm{p}\log_{\mathrm{b}}\mathrm{M}$
$(0.38)^{x}=e^{\ln(0.38)^{x}}=e^{x\ln 0.38}$
So
$y=96e^{x\ln 0.38}$
with $\ln 0.38\approx$-0.967584026262$\approx-0.968$
$y=96e^{-0.968x}$