College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 9 - Section 9.5 - The Binomial Theorem - 9.5 Assess Your Understanding: 27

Answer

$(ax+by)^5=\binom{5}{0}(ax)^5(by)^0+\binom{5}{1}(ax)^4(by)^1+\binom{5}{2}(ax)^3(by)^2+\binom{5}{3}(ax)^2(by)^3+\binom{5}{4}(ax)^1(by)^4+\binom{5}{5}(ax)^0(by)^5=a^5x^5+5a^4bx^4y+10a^3b^2x^3y^2+10a^2b^3x^2y^3+5ab^4xy^4+b^5y^5$

Work Step by Step

The binomial theorem expands an algebraic expression in the form of: $(x+y)^n=\binom{n}{0}x^ny^0+\binom{n}{1}x^{n-1}y^1+\binom{n}{2}x^{n-2}y^2+...+\binom{n}{i}x^{n-i}y^i+...+\binom{n}{n-1}x^{1}y^{n-1}+\binom{n}{n}x^0y^n=\sum_{i=0}^{n}\binom{n}{i}x^{n-i}y^i$ Here, x becomes $ax$ , y becomes $by$, and $n=5$. $(ax+by)^5=\binom{5}{0}(ax)^5(by)^0+\binom{5}{1}(ax)^4(by)^1+\binom{5}{2}(ax)^3(by)^2+\binom{5}{3}(ax)^2(by)^3+\binom{5}{4}(ax)^1(by)^4+\binom{5}{5}(ax)^0(by)^5=a^5x^5+5a^4bx^4y+10a^3b^2x^3y^2+10a^2b^3x^2y^3+5ab^4xy^4+b^5y^5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.