College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Test - Page 399: 4

Answer

$x\in \{ -\frac{1}{3},1,3 \}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $3x^3+2x-1=8x^2-4,$ $3x^3-8x^2+2x+3=0$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm3,$ $q:\qquad \pm 1,\pm3$ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm3,\pm\frac{1}{3},$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &3& -8 & 2 & 3\\ & & 3&-5 & -3\\ & -- & -- & -- & --\\ & 3&-5 & -3 & |\underline{0} \end{array}$ $f(x)=(x-1)(3x^2-5x-3),$ $(3x^2+x-6x-3),$ $x(3x+1)-3(3x+1),$ $(3x+1)(x-3),$ $f(x)=(x-1)(3x+1)(x-3))$ $x\in \{ -\frac{1}{3},1,3 \}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.