Answer
$m(m-4)(m+2)$.
Work Step by Step
The given polynomial is
$= m^3-2m^2-8m$
Factor out $m$.
$= m(m^2-2m-8)$
Rewrite $-2m$ as $-4m+2m$.
$= m(m^2-4m+2m-8)$
Group the terms.
$= m[(m^2-4m)+(2m-8)]$
Factor each group.
$= m[m(m-4)+2(m-4)]$
Factor out $(m-4)$.
$= m(m-4)(m+2)$
Hence, the complete factor of the polynomial is $m(m-4)(m+2)$.