Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 6 - Exponential Functions and Sequences - Chapter Review - Page 350: 31

Answer

The equation for the $n$th term is $a_n=486(\frac{1}{3})^{n-1}$ and $a_9=\frac{2}{27}$

Work Step by Step

The given series is $486,162,54,18,...$ First term $a_1=486$. Common ratio $r=\frac{162}{486}=\frac{1}{3}$. Equation for a geometric sequence is $\Rightarrow a_n=a_1r^{n-1}$ Substitute $486$ for $a_1$ and $\frac{1}{3}$ for $r$. $\Rightarrow a_n=486(\frac{1}{3})^{n-1}$ $\Rightarrow a_n=486(\frac{1}{3})^{n-1}$ Substitute $9$ for $n$. $\Rightarrow a_9=486(\frac{1}{3})^{9-1}$ Simplify. $\Rightarrow a_9=486(\frac{1}{3})^{8}$ $\Rightarrow a_9=\frac{2}{3^3}$. $\Rightarrow a_9=\frac{2}{27}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.