Answer
$\frac{\pi h^{2}}{4}$ and $\pi h^{2}(2)^{-2}$.
Work Step by Step
$\text{Area of a base of the cylinder}=\pi r^{2}$ where $r$ is the radius of the circular base. Substituting $\frac{h}{2}$ for $r$, we get
$\text{Area}=\pi (\frac{h}{2})^{2}=\frac{\pi h^{2}}{4}$
Using the properties of exponents, we can write
$\frac{\pi h^{2}}{4}=\pi h^{2}2^{-2}$
The expressions are $\pi r^{2}, \frac{\pi h^{2}}{4}$ and $\pi h^{2}(2)^{-2}$.