Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 1 - Solving Linear Equations - 1.2 - Solving Multi-Step Equations - Essential Question - Page 11: 1

Answer

a. $12$; b. $50$; c. $52$; d. $75$; e. $20$; f. $40$

Work Step by Step

$\textbf{a.}$ The number of sides of a triangle is $n=3$. The sum of the angles of a triangle is $$S=180(3-2)=180.$$ We determine $x$: $$\begin{align*} 30+x+9x+30&=180\\ 10x+60&=180\\ 10x&=180-60\\ 10x&=120\\ x&=12. \end{align*}$$ We determine the triangle's angles: $$\begin{align*} 30^\circ\\ (30+12)^\circ=42^\circ\\ 9(12^\circ)=108^\circ \end{align*}$$ $\textbf{b.}$ The number of sides of a triangle is $n=3$. The sum of the angles of a triangle is $$S=180(3-2)=180.$$ We determine $x$: $$\begin{align*} x+10+x+20+50&=180\\ 2x+80&=180\\ 2x&=180-80\\ 2x&=100\\ x&=50. \end{align*}$$ We determine the triangle's angles: $$\begin{align*} 50^\circ\\ (50+10)^\circ=60^\circ\\ (50+20)^\circ=70^\circ \end{align*}$$ $\textbf{c.}$ The number of sides of a quadrilateral is $n=4$. The sum of the angles of a quadrilateral is $$S=180(4-2)=360.$$ We determine $x$: $$\begin{align*} 50+x+2x+20+2x+30&=360\\ 5x+100&=360\\ 5x&=360-100\\ 5x&=260\\ x&=52. \end{align*}$$ We determine the quadrilateral's angles: $$\begin{align*} 50^\circ\\ (2(52)+30)^\circ=134^\circ\\ (2(52)+20)^\circ=124^\circ\\ 52^\circ. \end{align*}$$ $\textbf{d.}$ The number of sides of a quadrilateral is $n=4$. The sum of the angles of a quadrilateral is $$S=180(4-2)=360.$$ We determine $x$: $$\begin{align*} x+x+42+x+35+x-17&=360\\ 4x+60&=360\\ 4x&=360-60\\ 4x&=300\\ x&=75. \end{align*}$$ We determine the quadrilateral's angles: $$\begin{align*} 75^\circ\\ (75+42)^\circ=117^\circ\\ (75+35)^\circ=110^\circ\\ (75-17)^\circ=58^\circ. \end{align*}$$ $\textbf{e.}$ The number of sides of a pentagon is $n=5$. The sum of the angles of a pentagon is $$S=180(5-2)=540.$$ We determine $x$: $$\begin{align*} 540&=5x+2+3x+5+8x+8\\ &\phantom{}+4x+15+5x+10\\ 540&=25x+40\\ 540-40&=25x\\ 500&=25x\\ x&=20. \end{align*}$$ We determine the pentagon's angles: $$\begin{align*} (5(20)+2^\circ&=102^\circ\\ (3(20)+5)^\circ&=65^\circ\\ (8(20)+8)^\circ&=168^\circ\\ (5(20)+10)^\circ&=110^\circ\\ (4(20)+15)^\circ&=95^\circ. \end{align*}$$ $\textbf{f.}$ The number of sides of a hexagon is $n=6$. The sum of the angles of a hexagon is $$S=180(6-2)=720.$$ We determine $x$: $$\begin{align*} 720&=2(3x+16)+2x+8\\ &\phantom{}+4x-18+3x-7\\ &\phantom{}+2x+25\\ 720&=17x+40\\ 720-40&=17x\\ 680&=17x\\ x&=40. \end{align*}$$ We determine the hexagon's angles: $$\begin{align*} (3(40)+16^\circ&=136^\circ\\ (3(40)+16^\circ&=136^\circ\\ (2(40)+8)^\circ&=88^\circ\\ (4(40)-18)^\circ&=142^\circ\\ (3(40)-7)^\circ&=113^\circ\\ (2(40)+25)^\circ&=105^\circ. \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.