#### Answer

$\frac{2}{9(x-5)}$ square feet

#### Work Step by Step

Step 1: Length $L$= $\frac{x+5}{9x}$ feet and Breath $B$=$\frac{2x}{(x^{2}-25)}$ feet
Step 2: Area=$L \times B$= $\frac{x+5}{9x} \times \frac{2x}{(x^{2}-25)}$
Step 3: $\frac{x+5}{9x} \times \frac{2x}{(x^{2}-25)}$ =$\frac{x+5}{9x} \times\frac{2x}{(x+5)(x-5)}$
Step 4: Simplifying by cancelling (x+5) in both numerator and denominator, $\frac{1}{9x} \times\frac{2x}{(x-5)}$
Step 5: Simplifying by cancelling (x) in both numerator and denominator, $\frac{1}{9} \times\frac{2}{(x-5)}$
Step 6: Therefore, the answer is $\frac{2}{9(x-5)}$ square feet