#### Answer

$\sqrt[3]{\dfrac{2x}{27y^{12}}}=\dfrac{\sqrt[3]{2x}}{3y^{4}}$

#### Work Step by Step

$\sqrt[3]{\dfrac{2x}{27y^{12}}}$
Take the cubic root of both the numerator and the denominator and simplify:
$\sqrt[3]{\dfrac{2x}{27y^{12}}}=\dfrac{\sqrt[3]{2x}}{\sqrt[3]{27y^{12}}}=\dfrac{\sqrt[3]{2x}}{3y^{4}}$