#### Answer

$2$

#### Work Step by Step

Recall the power property of logarithms (pg. 462):
$$\log_b{m^n}=n\log_b{m}$$
Using this property, we get:
$\log_{12}{144}=\log_{12}{12^2}=2\log_{12}{12}=2\times 1= 2$
We also used the fact that $\log_{12}{12}=1$ (because $12^1=12$).