Answer
See below.
Work Step by Step
The distance formula from $P_1(x_1,y_1)$ to $P_2(x_2,y_2)$ is $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.
The midpoint $M$ of the line segment from $P_1(x_1,y_1)$ to $P_2(x_2,y_2)$ is: $(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$.
Hence:
$d=\sqrt{(4-8)^2+(-3-(-7))^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt2.$
$M=(\frac{4+8}{2},\frac{-3+(-7)}{2})=(6,-5)$.