Answer
$129$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant is $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=-7(2\cdot6-(-4)\cdot1)-4(1\cdot6-(-4)\cdot-10)+5(1\cdot1-2\cdot-10)=-7(16)-4(-34)+5(21)=129.$