Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 14 Trigonometric Graphs, Identities, and Equations - 14.7 Apply Double-Angle and Half-Angle Formulas - 14.7 Exercises - Skill Practice - Page 959: 18


$-\dfrac{\sqrt 3}{2}$; $-\dfrac{1}{2}$ and $\sqrt 3$

Work Step by Step

$\cos a= \dfrac{1}{\sec a}=- \dfrac{1}{\sqrt {1+\tan^2 a}}=-\dfrac{1}{\sqrt {1+(-\sqrt 3)^2}}=-\dfrac{1}{2}$ $\sin 2a=2 \sin a \cos a = 2 (\dfrac{ \sqrt 3}{2}) (-\dfrac{1}{2})=-\dfrac{\sqrt 3}{2}$ $\cos 2a =\cos^2 a-\sin^2 a=(-\dfrac{1}{2})^2 - (\dfrac{ \sqrt 3}{2})^2=\dfrac{1}{4}-\dfrac{3}{4}=-\dfrac{1}{2}$ $\tan 2a =\dfrac{\sin 2a}{\cos 2a}=\dfrac{-\sqrt 3/2}{-1/2}=\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.