Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 14 Trigonometric Graphs, Identities, and Equations - 14.6 Apply Sum and Difference Formulas - 14.6 Exercises - Skill Practice - Page 952: 24


$$-\cot \left(x\right)$$

Work Step by Step

Simplifying the expression using the sum and difference formulas, we find: $$\frac{\sin \left(\frac{\pi }{2}+x\right)}{\cos \left(\frac{\pi }{2}+x\right)} \\ \frac{\cos \left(\frac{\pi }{2}\right)\sin \left(x\right)+\cos \left(x\right)\sin \left(\frac{\pi }{2}\right)}{\cos \left(\frac{\pi }{2}\right)\cos \left(x\right)-\sin \left(\frac{\pi }{2}\right)\sin \left(x\right)} \\ -\frac{\cos \left(x\right)}{\sin \left(x\right)} \\ -\cot \left(x\right)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.