Answer
See below
Work Step by Step
Use the law of sines:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$
First we obtain: $\frac{a}{\sin A}=\frac{c}{\sin C}\\sin C=\frac{\sin A}{a}\times c\\\arcsin(\sin C)=\arcsin (\frac{\sin A}{a}\times c)\\C=\arcsin (\frac{\sin A}{a}\times c)\\C=\arcsin (\frac{\sin 66^\circ}{20}\times 16)\\C \approx 47^\circ$
The sum of the angles of the triangle is $180^\circ$
$$A+B+C=180^\circ\\B=180^\circ-A-C\\B=180^\circ-66^\circ-47^\circ\\B=67^\circ$$
The formula for the area is: $=\frac{1}{2}ac\sin B=\frac{1}{2}\times 20 \times16 \times \sin 67^\circ \approx 147.3$