#### Answer

Solution to the system (2,-7)

#### Work Step by Step

Given:
Equation one:2x+3y=-17
Equation two: 3x+2y=-8
In equation, we can use elimination method to find y.
Subtract 2x from both sides then divide both sides by 3. => 3y=-2x-17 => y=$\frac{-2}{3}$x-$\frac{17}{3}$
Substitute y into second equation.
We have: 3x+2($\frac{-2}{3}$-$\frac{17}{3}$)=-8.
Distribute 2: 3x-$\frac{4}{3}$x-$\frac{34}{3}$=-8.
Combine like terms and simplify: $\frac{5}{3}$x=$\frac{10}{3}$=> x = 2
When x=2, 2(2)+3y=-17=>4+3y=-17=>3y=-21=>y=-7
Point of intersection: (2,-7)