Answer
$3x+2y$
Work Step by Step
The long division method below shows the result of $
(15x^2+7xy-2y^2)\div(5x-y)
.$
$$\begin{array}{l}
\phantom{5x-y)}\phantom{1^2}3x+\phantom{7x}2y
\\
\color{blue}{5x-y}\color{black}{\overline{\smash{)}15x^2+\phantom{1}7xy-2y^2}}
\\
\phantom{5x-y)}\underline{15x^{2}-\phantom{1}3xy}
\\
\phantom{5x-y)15x^{2}-}10xy-2y^2
\\
\phantom{5x-y)15x^{2}-}\underline{10xy-2y^2}
\\
\color{red}{\phantom{5x-y)15x^{2}-10xy-2}0}
\end{array}$$Hence, the quotient is $3x+2y$.