Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 2 - Section 2.4 - Sequences and Summations - Exercises - Page 167: 6

Answer

Here are the first 10 terms of each sequence: *Sequence a) Starting with 10, subtracting 3* 1. 10 2. 7 3. 4 4. 1 5. -2 6. -5 7. -8 8. -11 9. -14 10. -17 *Sequence b) Sum of first n positive integers* 1. 1 2. 3 (1+2) 3. 6 (1+2+3) 4. 10 (1+2+3+4) 5. 15 (1+2+3+4+5) 6. 21 (1+2+3+4+5+6) 7. 28 (1+2+3+4+5+6+7) 8. 36 (1+2+3+4+5+6+7+8) 9. 45 (1+2+3+4+5+6+7+8+9) 10. 55 (1+2+3+4+5+6+7+8+9+10) *Sequence c) 3^n - 2^n* 1. 3^1 - 2^1 = 1 2. 3^2 - 2^2 = 5 3. 3^3 - 2^3 = 19 4. 3^4 - 2^4 = 65 5. 3^5 - 2^5 = 211 6. 3^6 - 2^6 = 665 7. 3^7 - 2^7 = 2059 8. 3^8 - 2^8 = 6305 9. 3^9 - 2^9 = 19279 10. 3^10 - 2^10 = 59049 *Sequence d) Floor of sqrt(n)* 1. floor(sqrt(1)) = 1 2. floor(sqrt(2)) = 1 3. floor(sqrt(3)) = 1 4. floor(sqrt(4)) = 2 5. floor(sqrt(5)) = 2 6. floor(sqrt(6)) = 2 7. floor(sqrt(7)) = 2 8. floor(sqrt(8)) = 2 9. floor(sqrt(9)) = 3 10. floor(sqrt(10)) = 3 *Sequence e) Fibonacci-like* 1. 1 2. 5 3. 6 (1+5) 4. 11 (5+6) 5. 17 (6+11) 6. 28 (11+17) 7. 45 (17+28) 8. 73 (28+45) 9. 118 (45+73) 10. 191 (73+118) *Sequence f) Largest integer with n bits* 1. 1 (2^0) 2. 3 (2^1+2^0) 3. 7 (2^2+2^1+2^0) 4. 15 (2^3+2^2+2^1+2^0) 5. 31 (2^4+2^3+2^2+2^1+2^0) 6. 63 (2^5+2^4+2^3+2^2+2^1+2^0) 7. 127 (2^6+2^5+2^4+2^3+2^2+2^1+2^0) 8. 255 (2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) 9. 511 (2^8+2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) 10. 1023 (2^9+2^8+2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) Please let me know if you have any questions or if you'd like more terms!

Work Step by Step

Here are the first 10 terms of each sequence: *Sequence a) Starting with 10, subtracting 3* 1. 10 2. 7 3. 4 4. 1 5. -2 6. -5 7. -8 8. -11 9. -14 10. -17 *Sequence b) Sum of first n positive integers* 1. 1 2. 3 (1+2) 3. 6 (1+2+3) 4. 10 (1+2+3+4) 5. 15 (1+2+3+4+5) 6. 21 (1+2+3+4+5+6) 7. 28 (1+2+3+4+5+6+7) 8. 36 (1+2+3+4+5+6+7+8) 9. 45 (1+2+3+4+5+6+7+8+9) 10. 55 (1+2+3+4+5+6+7+8+9+10) *Sequence c) 3^n - 2^n* 1. 3^1 - 2^1 = 1 2. 3^2 - 2^2 = 5 3. 3^3 - 2^3 = 19 4. 3^4 - 2^4 = 65 5. 3^5 - 2^5 = 211 6. 3^6 - 2^6 = 665 7. 3^7 - 2^7 = 2059 8. 3^8 - 2^8 = 6305 9. 3^9 - 2^9 = 19279 10. 3^10 - 2^10 = 59049 *Sequence d) Floor of sqrt(n)* 1. floor(sqrt(1)) = 1 2. floor(sqrt(2)) = 1 3. floor(sqrt(3)) = 1 4. floor(sqrt(4)) = 2 5. floor(sqrt(5)) = 2 6. floor(sqrt(6)) = 2 7. floor(sqrt(7)) = 2 8. floor(sqrt(8)) = 2 9. floor(sqrt(9)) = 3 10. floor(sqrt(10)) = 3 *Sequence e) Fibonacci-like* 1. 1 2. 5 3. 6 (1+5) 4. 11 (5+6) 5. 17 (6+11) 6. 28 (11+17) 7. 45 (17+28) 8. 73 (28+45) 9. 118 (45+73) 10. 191 (73+118) *Sequence f) Largest integer with n bits* 1. 1 (2^0) 2. 3 (2^1+2^0) 3. 7 (2^2+2^1+2^0) 4. 15 (2^3+2^2+2^1+2^0) 5. 31 (2^4+2^3+2^2+2^1+2^0) 6. 63 (2^5+2^4+2^3+2^2+2^1+2^0) 7. 127 (2^6+2^5+2^4+2^3+2^2+2^1+2^0) 8. 255 (2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) 9. 511 (2^8+2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) 10. 1023 (2^9+2^8+2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) Please let me know if you have any questions or if you'd like more terms!
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.