Answer
$f^{-1}$(y) = $\sqrt[3] (y-1) $ or $(y-1)^{\frac{1}{3}}$
Work Step by Step
Inverse function of f(x) = $x^{3}$ + 1
Inverse function means if f(a) = b, then $f^{-1}$(b) = a.
Let y be f(x).
y = $x^{3}$ + 1
y - 1 = $x^{3}$
x = $\sqrt[3] (y-1)$