Answer
Prove each inclusion
Work Step by Step
a) We have to prove that
$$(A\cup B)\subseteq (A\cup B\cup C).$$
We take an arbitrary element $x\in A\cup B$. This means that
$$x\in A\text{ or }x\in B.$$
Therefore $x\in (A\cup B\cup C)$ because $x\in (A\cup B\cup C)$ is equivalent to $x\in A$ or $x\in B$ or $x\in C$.
So we got that
$$(A\cup B)\subseteq (A\cup B\cup C).$$
b) We have to prove that
$$(A\cap B\cap C)\subseteq (A\cap B).$$
We take an arbitrary element $x\in A\cap B\cap C$. This means that
$$x\in A\text{ and } x\in B\text{ and } x\in C.$$
Because $x\in A\text{ and } x\in B$, it means $x\in A\cap B$.
We got:
$$(A\cap B\cap C)\subseteq (A\cap B).$$
c) We have to prove that
$$(A-B)-C\subseteq A-C.$$
We take an arbitrary element $x\in (A-B)-C$. This means that
$$x\in A-B\text{ and } x\not \in C.$$
Because $x\in A-B$ it follows that $x\in A$ and $x\not\in B$.
Because $x\in A\text{ and } x\not\in C$, it means $x\in A-C$.
We got:
$$(A-B)-C\subseteq A-C.$$
d) We have to prove that
$$(A-C)\cap(C-B)=\emptyset.$$
We take an arbitrary element $x\in (A-C)\cap(C-B)$. This means that
$$x\in A-C\text{ and } x\in C-B.$$
Because $x\in A-C$ it follows that $x\in A$ and $x\not\in C$. Because $x\in C-B$ it follows that $x\in C$ and $x\not\in B$.
The intersection of the sets $(A-C)$ and $(C-B)$ contains the points which are in the same time in $C$, but not in $A$ and in $C$, but not in $B$. Since a point cannot be in the same time in $C$ and not in $C$, the intersection is the empty set.
We got:
$$(A-C)\cap(C-B)=\emptyset.$$
e) We have to prove that
$$(B-A)\cup(C-A)=(B\cup C)-A.$$
We take an arbitrary element $x\in (B-A)\cup(C-A)$. This is true if and only if
$$x\in B-A\text{ or } x\in C-A.$$
Because $x\in B-A$ if and only if $x\in B$ and $x\not\in A$ and $x\in C-A$ if and only if $x\in C$ and $x\not\in A$, it follows that $x\in B$ or $x\in C$ and $x\not\in A$, which can be written:
$$x\in (B\cup C)-A.$$
We got:
$$(B-A)\cup(C-A)=(B\cup C)-A.$$