Answer
a)$F(x,y) = \bar{x}.\bar{y}+\bar{x}.y+x.y$
b)$F(x,y) = x.\bar{y}$
c)$F(x,y) = \bar{x}.\bar{y}+\bar{x}.y+x.\bar{y}+x.y$
d)$F(x,y) = x.\bar{y}+ \bar{x}.\bar{y}$
Work Step by Step
a) Thus $F(x,y) =\bar{x}+y$ so $F(x,y) = 0 \Leftrightarrow y = 0$ and $ x =1$.
b) It is given.
c)$F(x,y) = 1$ so it's true for all pair $x,y$.
d)$F(x,y) = \bar{y}$ so $F(x,y) = 0 \Leftrightarrow y = 1$.